Texas State Collaborative
Established 2012

City of Corpus Christi/Nueces County Leadership Toolkit
Table of Contents

Introduction
Know Your Weather Risks
Building Codes Topline Messages
Mitigation Incentives
Executive Summary of Findings – City of Corpus Christi/Nueces County
Amendment Profile Layout – City of Corpus Christi
Average Texas Home Profile
Enforcement Rating – City of Corpus Christi/Nueces County
Frequently Asked Questions
Resources

TOOLKIT LEGEND

- Fire
- Flood
- Hail
- Hurricane
- Lightning
- Thunderstorm Winds

DISCLAIMER: This material is for informational and educational use only, and it is in no way intended to constitute legal advice. No attorney-client privilege is created or intended to be created with any recipient of this material. The Federal Alliance for Safe Homes, Inc. specifically disclaims any and all legal liability or responsibility for the accuracy, completeness, or usefulness of any information provided by this material. In no event will the Federal Alliance for Safe Homes, Inc. (or its employees, subcontractors, partners, or agents) be responsible for damages of any nature. This disclaimer includes any responsibility, obligations and liability with respect to any decisions or advice made or given as a result of this material or use thereof, including all warranties, whether express or implied. While reasonable efforts were taken to make this material accurate and up-to-date, changes may occur that render it no longer current or applicable to any given circumstance. Users of this material are advised to seek the assistance of competent legal counsel appropriately licensed in the State of Texas (or other applicable jurisdiction) with any questions about this material as it may apply to their circumstances. Please notify the Federal Alliance for Safe Homes, Inc. at info@flash.org of any changes to the codes that are the subject of this material or other matters that will help make this material as up to date as possible.
Texas leaders play an important role in fostering communities that are resilient against damage from natural disasters. Residents of resilient communities are better prepared for severe weather events and experience multiple benefits from strong building codes and practices. Benefits include safe, strong and sustainable homes and businesses, a more stable local economy, and fewer burdens and disruptions in the delivery of emergency services.

The Texas State Collaborative (TSC) is a private-public collaboration that was formed in 2012 to address the most pressing issues affecting Texas' built environment. Stakeholders from leading insurers, reinsurers, design/build associations, building code officials, emergency managers, meteorologists, and state and local government officials make up the collaborative.

The TSC supports three key building blocks in support of disaster-resilient communities:

- Increase public safety through enhanced awareness of Texas weather risks
- Modern strong state and local building codes
- Consistent and effective enforcement of state and local building codes by trained professionals

To that end, the Federal Alliance for Safe Homes (FLASH)® created the Texas Leadership Toolkit for the TSC to raise awareness of weather perils specific to the City of Corpus Christi/Nueces County and to help spotlight what residential building code is in effect and what that means with respect to life safety for the City of Corpus Christi/Nueces County.

Stakeholders of the TSC:

- BASF – The Chemical Company
- Building Officials Association of Texas
- Cement Council of Texas
- Federal Alliance for Safe Homes (FLASH)
- Federal Emergency Management Agency (FEMA)
- FloodSmart
- Habitat for Humanity Texas
- International Code Council
- ISO
- KOHLER Generators
- National Storm Shelter Association
- National Weather Service
- Portland Cement Association
- RenaissanceRe
- Simpson Strong-Tie Co.
- State Farm Insurance Companies
- Texas Department of Insurance
- Texas Floodplain Management Association
- Texas Tech University, National Wind Institute
- The Home Depot
- The Salvation Army
- Truss Manufacturers of America
- USAA
- WeatherPredict Consulting Inc.
Top Three Hazards for the City of Corpus Christi: Hurricanes, Flash Floods, and Thunderstorm Winds

Hurricanes

Hurricane Carla made landfall near Port O'Connor Texas, on September 11, 1961 as a Category 4 storm. Carla’s storm surge was measured at 22 feet, with coastal communities from Port O’Connor to Indianola leveled by storm tides that reached 15-17 feet above mean sea level. In these communities, extreme winds peaked at 170 mph. The extreme tides inundated downtown Port Lavaca with up to 2 feet of flood water, and displaced fishing boats on highway 35. Estimated damage costs exceeded $2.36 Billion (2010 Dollars). Tragically, 46 people lost their lives.

Flash Floods

On April 25, 2004, heavy rain inundated the southern Coastal Bend of Texas, with an estimated 5 to 8 inches of rainfall across most of Nueces and San Patricio counties east of U.S. 77, and a bull’s eye of 7 to 10 inches of rainfall across much of the south side of Corpus Christi. The heavy rainfall resulted in extensive flooding of primary and secondary roads in Nueces and San Patricio counties. The Corpus Christi Police Department reported over 100 vehicles stalled in Corpus Christi, with some drivers needing rescue. Water reached into homes in Tuloso-Midway and Taft, as well as isolated areas in the south side of Corpus Christi. Several city streets and intersections were not drivable because of the flooding.
The heavy rainfall also compounded ongoing river flooding problems throughout April 2004, especially along the Nueces River, resulting in flash flood warnings issued by the Corpus Christi NWS office for Nueces and San Patricio counties.

Thunderstorm Winds

Thunderstorms produce a wide range of hazards, including lightning, hail, and sometimes even tornadoes. However, the most frequent severe weather report comes from damaging winds. Also referred to as microbursts or straight line thunderstorm winds, these strong outflow winds in a storm can reach speeds of over 100 mph and can produce tornado like damage across a very large area.

The official National Weather Service station in Corpus Christi has experienced at least seventeen severe thunderstorm wind gusts (winds that are 58 mph or greater) since 1888. On January 9, 2011 a severe thunderstorm wind was recorded in Corpus Christi with a 69 mph peak wind gust. This storm system also resulted in large hail and at least one tornado, resulting in widespread wind damage across the Coastal Bend.

Source: Unless otherwise noted, all information in this document courtesy of the National Weather Service. FLASH would like to thank the various individuals who contributed to this toolkit.
Better Building Codes and Practices Save Lives, Property, and Money

- Building codes are a community’s first line of defense against natural disasters, including flash floods, hurricanes, hail, tornadoes, and wildfire. Building codes offer a minimum level of life safety which is why modern, model codes and beyond-code building practices better protect homes and businesses against natural disasters.

 - Over the last 15 years, Texas has experienced its share of property damage from devastating natural disasters including:

<table>
<thead>
<tr>
<th>By Year</th>
<th>Building Events</th>
<th>By Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Tornadoes/Hail (Palo Pinto) - $200 million</td>
<td>$13 billion</td>
</tr>
<tr>
<td>2012</td>
<td>Hail/Wind (McAllen) - $263 million</td>
<td>$4.7 billion</td>
</tr>
<tr>
<td>2012</td>
<td>Tornadoes/Hail (Dallas/Ft. Worth) - $785 million</td>
<td>$3.4 billion</td>
</tr>
<tr>
<td>2012</td>
<td>Hail Storm (Dallas/Ft. Worth) - $901 million</td>
<td>$1.1 billion</td>
</tr>
<tr>
<td>2011</td>
<td>Wildfire (Bastrop County) - $367 million</td>
<td>$901 million</td>
</tr>
<tr>
<td>2009</td>
<td>Hail Storm (Austin) - $150 million</td>
<td>$785 million</td>
</tr>
<tr>
<td>2008</td>
<td>Hurricane Ike (Galveston) - $13 billion</td>
<td>$605 million</td>
</tr>
<tr>
<td>2008</td>
<td>Hurricane Dolly (Port Mansfield) - $543 million</td>
<td>$543 million</td>
</tr>
<tr>
<td>2005</td>
<td>Hurricane Rita (Sabine Pass) - $3.4 billion</td>
<td>$367 million</td>
</tr>
<tr>
<td>2003</td>
<td>Hail Storm (North Texas) - $1.1 billion</td>
<td>$263 million</td>
</tr>
<tr>
<td>2001</td>
<td>Tropical Storm Allison (Houston) - $4.7 billion</td>
<td>$200 million</td>
</tr>
<tr>
<td>2000</td>
<td>Tornado (Ft. Worth) - $605 million</td>
<td>$150 million</td>
</tr>
</tbody>
</table>

- Better building codes and mitigation save lives and limit property losses.
 - A 2011 Louisiana State University Hurricane Center study determined that if strong building codes had been in place before Katrina, wind damage would have been reduced by 80 percent and $8 billion in property losses would have been saved.
 - A December 2013 report by the Federal Insurance Office of U.S. Department of the Treasury stated “proper construction techniques and materials can save lives and reduce both insured losses and taxpayer burden.” The report further cited that “effective mitigation strongly enhances the safety of occupants and durability of property.”

- Better building codes and mitigation reduce the burden on taxpayers and local governments tasked with providing first responders and emergency management services.
 - A 2005 study by the National Institute of Building Sciences’ Multihazard Mitigation Council documented that $1 spent on mitigation for activities ranging from enhanced building codes and public awareness to large scale physical retrofitting and other mitigation construction projects saves society an average of up to $4.

- Better building codes prevent economic disruption to businesses, their employees, and the overall community.
 - According to the National Oceanic and Atmospheric Administration, there have been 25 major disasters in the last two years that have caused more than $1 billion in economic losses.
Introduction to Texas Windstorm Insurance Association (TWIA)
TWIA provides windstorm and hail insurance coverage to coastal residents when private insurance companies exclude such coverage from their residential policies. TWIA currently provides this coverage in 14 Texas coastal counties as well as parts of Harris County. Generally, for designated catastrophe areas to be eligible for TWIA coverage, all construction, alteration, remodeling, enlargement, and repair of, or addition to, any structure in the designated catastrophe area must be performed in compliance with the applicable building code standards, as set forth in the plan of operation.

TWIA Credits for Meeting or Exceeding Applicable Building Code
TWIA offers premium discounts ranging from 19% to 33% for building code compliance depending on the location of the insured property and which building code the home is constructed to meet. The Texas Department of Insurance (TDI) must certify the structure as meeting the requirements specified in the TWIA Building Code or the I-Codes adopted by TDI since February 1, 2003 to qualify for the rate reductions. The rate reductions apply to windstorm and hail insurance policies issued by TWIA on and after February 28, 1999 for the TWIA Building Code and on and after July 31, 2003 for the I-Codes adopted by TDI since February 1, 2003.

TWIA Discounts for Existing Structures with Retrofitted Exterior Openings
TWIA policies are eligible for a rate reduction of 10% for dwelling coverage and 10% for personal property coverage for residential structures in a designated catastrophe area constructed prior to September 1, 1998, or February 1, 2003, as applicable, which have been retrofitted with exterior opening protection that meets the windborne debris impact-resisting standards established by TDI. “Exterior openings” are defined as “Openings in the exterior walls or roofs of residential structures, including, but not limited to, windows, doors, garage doors, and skylights.” All exterior openings of the residential structure must be protected.

Homeowners’ and TWIA Discounts for Impact-Resistant Roofing
Many insurance companies offer a discount for impact-resistant roof coverings to their policyholders. Each insurance company has the ability to determine the test standards the products must comply with and the types of discounts or credits they offer. Also, TWIA offers credits to residential structures for impact-resistant roof coverings tested to UL Standard 2218. The credits range from 4% to 14% based on the territory, date installed, and class of roof from UL 2218.

Homeowners’ Discount for Homes Constructed with an Insulating Concrete Form System
Texas Statutes authorize an insurer the option to grant an applicant a discount on the applicant’s homeowners’ insurance premiums for insured property on receipt of written verification from the applicant that the property was constructed with an insulating concrete form system. “Insulating concrete form system” is defined as “a building construction system primarily used to frame exterior walls in which polystyrene foam forms are placed in the walls of a structure under construction and filled with concrete and steel reinforcing material to become a permanent part of the structure.”

Freeboard, NFIP Premium Savings and CRS Credits
The 2008 Supplement to the 2006 Evaluation of the National Flood Insurance Program’s Building Standards validated the 2006 publication’s general hypothesis of freeboard’s benefits to homeowners and communities—both regarding avoided flood damages and National Flood Insurance Program (NFIP)
premium savings offsetting the additional costs of construction. This report provides additional information regarding NFIP premiums and construction costs as they correlate to different amounts of freeboard, and is available at http://www.fema.gov/media-library/assets/documents/31735?id=7241. Furthermore, participating communities may receive NFIP Community Rating System (CRS) credits if the community requires freeboard, in accordance with CRS specifications. For more information about the CRS Program, visit http://www.fema.gov/national-flood-insurance-program-community-rating-system.

Sources: TDI, Texas Windstorm Insurance Association Overview, August 9, 2013 Edition.
Freeboard, National Flood Insurance Program (NFIP) Premiums and Community Rating System (CRS) Credits:
FLASH would also like to thank the generous assistance of Dr. Paul Bove with TDI in the development of this content.
The following is an executive summary of findings from an analysis conducted of the residential building code in effect for your community as it compares to model codes and beyond-code disaster resilient building practices.

Residential Building Code for City of Corpus Christi:
2009 International Residential Code with amendments

Residential Building Code for Nueces County:
None

Residential Building Code Opportunities:
- Increase freeboard to 12” or greater above the BFE
- Recommend impact-resistant roof coverings with a rating of Class 3 or 4 when tested in accordance with UL 2218 or FM 4473, to provide increased resistance to hail and debris resulting from thunderstorm winds
- Increase wind design speed value to ASCE 7-05 wind speed value plus 20 mph, increase roof deck thickness and add requirement for sealed roof deck for additional protection against wind-borne debris and hail

Building Code Effectiveness Grade Scale (BCEGS) Rating for City of Corpus Christi: 5

Building Code Effectiveness Grade Scale (BCEGS) Rating for Nueces County: 99

All communities need building codes to protect their citizens from weather risks such as hurricanes, tornadoes, flash floods, hail, and wildfire. Safe, strong and sustainable homes that are more resilient against damage from natural disasters also support a more stable local economy, fewer taxpayer burdens, and reduced demand for emergency services.

Local elected leaders committed to protecting the public have a central role in improving the level of safety for homes built in their communities. Strong building codes and effective enforcement of those are the foundation for disaster-resilient communities.
Additional Background

City of Corpus Christi

The City of Corpus Christi has a population of 305,215 [2010 Census], and it has adopted the 2009 IRC (with amendments). Regarding some building code processes in the City of Corpus Christi, the City Council may amend the residential building code, and the Building Inspection Division is responsible for the maintenance and enforcement of the building codes. In the City of Corpus Christi, a building official is described as the city manager’s designee to administer and enforce the building codes, as well as an individual designed by the city manager to act for the building official.

A building code board of appeals hears and decides appeals from the building official’s actions relating to the Building Code, and it may recommend building code changes to the city council.

Nueces County

Nueces County has a population of 340,223 [2010 Census]. Nueces County has not adopted a mandatory residential building code. Nueces County has floodplain regulations; more information is available at: http://www.co.nueces.tx.us/pw/floodplain_develop.asp.

1 The material in this document and throughout this toolkit is for informational and educational use only, and it is in no way intended to constitute legal advice. Contact the local government or other authority for official building code information.

2 Corpus Christi City Code, Part III, Chapter 14, Development Services, Article II. City of Corpus Christi Technical Construction Codes, Division 8. Residential Code.

4 Corpus Christi City Code, Part III, Chapter 14, Development Services, Article II. City of Corpus Christi Technical Construction Codes, Division 1. Scope and Administration of Technical Construction Codes. Sec. 14-202. Definitions.

5 Corpus Christi City Code, Part III, Chapter 14, Development Services, Article II. City of Corpus Christi Technical Construction Codes, Division 1. Scope and Administration of Technical Construction Codes. Sec. 14-206. Technical construction boards.

6 This figure includes the population of the City of Corpus Christi. The total population of Nueces County without the City of Corpus Christi according to the 2010 Census is approximately 35,008 (Corpus Christi is also within Aransas and San Patricio counties).
Amendment Profile Layout

City of Corpus Christi: Substantial Amendment Changes to 2009 IRC, Impacts & Recommendations

<table>
<thead>
<tr>
<th>IRC Section</th>
<th>Current Amendment</th>
<th>Impact</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2009 IRC</td>
<td>R322 Flood-Resistant Construction</td>
<td>City of Corpus Christi floodplain regulations do not specify any freeboard above the Base Flood Elevation (BFE)</td>
<td>Freeboard provides additional flood protection and results in potential insurance premium reductions; 2009 IRC generally does not require freeboard (outside of Coastal A and V Zones)</td>
</tr>
<tr>
<td>2 - 2009 IRC</td>
<td>N/A</td>
<td>City of Corpus Christi does not specify requirements for impact-resistant roofing for residential structures</td>
<td>The 2009 IRC does not contain provisions regarding impact-resistant roofing; roof coverings are a major element often damaged by hail</td>
</tr>
<tr>
<td>3 - 2009 IRC</td>
<td>Table R301.2(1) Climatic and Geographic Design Criteria</td>
<td>City of Corpus Christi specifies 120/130 mph (3-sec gust) for wind design speed in table R301.2(1)</td>
<td>City of Corpus Christi’s current wind design speed corresponds to values in 2009 IRC</td>
</tr>
<tr>
<td>4 - 2009 IRC</td>
<td>R110.1 Certificate of Occupancy (C.O.)</td>
<td>City of Corpus Christi has not amended Section R110.1</td>
<td>2009 IRC Section R110.1 provides that the building official must issue a C.O. before occupancy or change in use</td>
</tr>
</tbody>
</table>
City of Corpus Christi: Substantial Amendment Changes, Impacts & Recommendations – Technical Notes

1) Provision 1 Impact

City of Corpus Christi floodplain regulations do not specify any freeboard above the BFE for special flood hazard areas, although it provides a recommendation of 12” above the BFE. There are many differences between floodplain regulations and the IRC, and our recommendation focuses on increasing freeboard as just one measure of increased flood protection. Individual homes face different flood risks, and homeowners can learn more about their dwelling’s risk from local floodplain management professionals or from the National Flood Insurance Program (NFIP). A general recommendation for improving a dwelling’s flood resistance is to incorporate freeboard above the BFE. This added factor of safety may also result in reduced flood insurance premiums. Furthermore, if your community participates in the NFIP Community Rating System (CRS) program, there could be additional flood insurance premium discounts up to 45 percent.

2) Provision 2 Impact

The most effective way to minimize hail damage to a structure’s roof system is to use roofing materials that are resistant to hail impacts. Hail damage occurs on other elements of the structure as well (e.g., windows and sidings), which should be considered for potential mitigation measures. While the IRC does not require impact-resistant roof coverings, such coverings are an effective way to increase resistance to hail and debris damage resulting from thunderstorm winds.

3) Provision 3 Impact

The basic wind speed value in Table R301.2(1) conforms with the values specified in the basic wind speed map on Figure R301.2(4)A in the 2009 IRC. 2009 IRC Section R301.2.1.1 Design Criteria applies due to the fact that the wind speeds for the City of Corpus Christi in IRC Figure R301.2(4) equal or exceed 100 miles per hour; accordingly, one of the four design criteria listed in this section should apply: AF&PA Wood Frame Construction Manual for One- and Two-Family Dwellings (WFCM), ICC Standard for Residential Construction in High Wind regions (ICC-600), Minimum Design Loads for Buildings and Other Structures (ASCE-7), or AISI Standard for Cold-Formed Steel Framing—Prescriptive Method for One- and Two- Family Dwellings (AISI S230). Since tropical cyclones and thunderstorm winds are two of the top three weather hazards identified by the Weather Forecast Office for the City of Corpus Christi, additional design measures can be taken to protect structures from these and other high-wind events. Additionally, we recommend increasing the ASCE 7-05 wind speed value 20 mph (this value should be revisited if ASCE 7-10 applies), increasing roof deck thickness, and adding a requirement for sealed roof deck.

4) Provision 4 Impact

Generally, a C.O. is granted upon a determination that a structure may be occupied for its intended use. Before a C.O. is issued, compliance with the applicable building code is typically reviewed. Use of a C.O. is an important enforcement tool for a jurisdiction’s building official, which may lead to increased compliance with building codes.
Average Texas Home Profile

Current Residential Practices for Homes Built in City of Corpus Christi

- Roof deck typically 7/16” OSB or plywood
- Built to 2012 IRC with amendments
- No freeboard currently

Recommended New or Retrofit Construction for Weather-Ready Homes

- Approximately 2850 square feet
- Median price $197,000

- No specific requirement for impact-resistant roof covering
- Impact-resistant roof covering with a rating of Class 3 or 4 per UL 2218 or FM 4473
- Increase roof deck thickness & require sealed roof deck
- Examples of Amendment Profile Layout Recommendations
- Freeboard 12” or more from base flood elevation to the first floor of the residence
How does City of Corpus Christi/Nueces County Rate on Building Code Enforcement?

(The lower the class number is, the more favorable the rating)

City of Corpus Christi’s BCEGS® rating is: 5

Nueces County’s BCEGS rating is: 99

Building Code Effectiveness Grading Scale (BCEGS) classification, a program of the Insurance Services Office, Inc. (ISO)®, is a tool used to measure the effectiveness of a jurisdiction’s building code enforcement. The BCEGS program assesses the adoption and enforcement of a community’s building codes with special emphasis on mitigation of losses from natural hazards. ISO collects information regarding the administration of building codes, building plan review, field inspections, and other underwriting data. This information is used to determine a “class” based on a 1 to 10 scale. The lower the class number is, the more favorable the rating. A BCEGS Class 99 rating may be assigned for several reasons: the properties were developed prior to the initial BCEGS evaluation, the jurisdiction does not meet the participation requirements of the BCEGS program, or the jurisdiction declines participation in the BCEGS program. More information can be found at http://www.isomitigation.com/bcegs/building-code-classification.pdf.

One important issue for Texans is that while certain Texas counties, including Nueces County, may adopt a residential building code, at least some Texas counties believe that they lack meaningful enforcement power over those building codes. Without effective enforcement, Texans lose the assurance that their homes are, in fact, constructed to that minimum standard.

Why building code enforcement is essential

Many Texas communities are at risk of severe damage from hurricanes, floods, tornados, wildfires and other disasters. Adoption and effective enforcement of residential building codes creates the first line of defense for Texans against severe weather events. Texans deserve strong, safe and resilient homes for protection of their families and financial security.

State and local jurisdictions have the opportunity—and in some cases, the obligation—to adopt updated building codes and enforce them. However, the adoption of modern, model building codes is only half of the equation. A jurisdiction’s adoption of a building code can be rendered meaningless without effective enforcement. Furthermore, professional and ongoing training and certification of building officials is essential to effective enforcement.

Communities benefit from a favorable BCEGS classification. For example, a favorable BCEGS classification may positively impact jurisdictions in one or more of the following ways:

- Result in better homeowners and commercial insurance rates
- Allow the community to apply for a better class rating in the Community Rating System (CRS), which may in turn result in lower insurance premiums
- Reflect and further incentivize better building practices that strengthen a community’s resilience against disasters

For more information about the BCEGS program, call ISO at (800) 444-4554 or e-mail bcegsupdate@verisk.com.
What are building codes?
Building codes have been in use in the United States for more than 100 years, when major cities began to adopt and enforce building codes in response to large fires in densely populated urban areas. While early building codes were in place to reduce fire risk, today’s building codes are the minimum acceptable standards to protect the health, safety and general welfare of building occupants.

Building codes can be classified as either “prescriptive” or “performance” based. Performance codes provide a technical objective which leaves the method of achieving the objective up to the architect/engineer and builder. Prescriptive codes specify the method for designers and builders to achieve the objective. Some model codes, like the International Residential Code (IRC) have both prescriptive and performance based provisions, although the IRC is a prescriptive-oriented code.

What is the process and timeframe for developing model building codes?
The IRC for One- and Two-Family Dwellings is developed by the International Code Council (ICC) through the governmental consensus process. The IRC is revised every 18 months and new editions are published every three years. Most United States jurisdictions that adopt a residential code adopt an edition of the IRC, sometimes with amendments.

Model building codes developed by the ICC, like the IRC, establish minimum regulations for construction. They are a starting point—not a guarantee that a structure is impervious from natural disaster. The analysis contained within the Texas Leadership Toolkit (Toolkit) is based on the notion that modern, model building codes reflect the best available minimum building materials and practices; nonetheless, certain building materials and practices beyond these minimum standards should be considered for optimal resiliency.

Why are building codes important?
Modern, model building codes that are consistently enforced by well-trained professionals are important steps to becoming a disaster-resilient community. Building codes protect the public health and safety. The increased burden from weak building codes or lax enforcement falls on taxpayers – through property losses, higher insurance premiums and lost economic opportunities. According to the Federal Emergency Management Agency (FEMA), structures built to higher standards are 77 percent less likely to be damaged.

Do stronger building codes make a difference when severe weather strikes?
Modern, model building codes reflect the best available building practices to build to minimum regulations. Homes built to modern, model building codes will have the advantage of better wall bracing, improved roof tie-downs and overall stronger connections. For example, wind-resistant building practices like those included in the 2012 IRC can dramatically improve building performance during hurricanes and tropical storms. Moreover, according to the National Institute of Building Sciences, for every $1 spent to make buildings stronger, the American taxpayer saves $4 in federal disaster assistance.

What is a Certificate of Occupancy and why is it important?
Generally, a certificate of occupancy (C.O.) is a document provided by a city or county upon determination that a structure may be safely occupied for its intended use. It is often required after new construction and changes in occupancy classifications, as well as for other conditions as specified by a jurisdiction. Before a C.O. is issued, compliance with the applicable building code is typically reviewed. Use of a C.O. is an important enforcement tool for a local building official.
Who is responsible for enforcing building codes?
It is the responsibility of state and local jurisdictions to adopt and enforce building codes. Many communities are at risk of severe damage from hurricanes, floods, tornados, wildfires and other disasters. Adoption and effective enforcement of building codes creates a crucial line of defense against severe weather events.

Does it cost more to build to modern, model building codes?
The most cost-effective and efficient means of strengthening buildings is at the time of new construction. Modern, model building codes ensure that new construction takes advantage of continuous innovation in building design, products, methods and technologies. Often, there is only a marginal increase in costs to build better.

Communities with model codes that are well-enforced experience less damage and lower insured losses from severe weather events and rank better on the Building Code Effectiveness Grading Scale (BCEGS). Communities that adopt model codes also compete more effectively for large employers who bring jobs, economic vitality and an overall stronger business climate.

What is the link between discounts on homeowners’ insurance premiums and building codes?
The Texas Windstorm Insurance Association (TWIA) provides windstorm and hail insurance coverage to coastal residents when private insurance companies exclude such coverage from their residential policies. TWIA currently provides this coverage in 14 Texas coastal counties as well as parts of Harris County.

TWIA offers premium discounts ranging from 19% to 33% for meeting or exceeding applicable building codes depending on the location of the insured property and which building code the risk is constructed to meet, including discounts for existing or new homes that:

- have retrofitted all exterior openings such as windows, doors, garage doors and skylights;
- have impact-resistant roof covering; and
- are constructed with an insulating concrete form system.

To learn more, check out the one-page summary included in this Toolkit.

Resources

Texas

- Texas Department of Public Safety, Division of Emergency Management, http://www.txdps.state.tx.us/dem/index.htm
- Building Officials Association of Texas, http://www.boatx.org/
- Texas Association of Regional Councils, http://www.txregionalcouncil.org/
- Texas Department of Insurance, http://www.tdi.texas.gov/
- Texas Fire Marshal’s Association, http://www.txfma.org/

Other

- Federal Emergency Management Agency (FEMA)
 - FEMA Helpline: BuildingScienceHelp@fema.dhs.gov
- International Code Council (ICC)